A Proof of then! Conjecture for Generalized Hooks

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proof for a generalized Nakayama conjecture

In a recent paper Külshammer, Olsson, and Robinson proved a deep generalization of the Nakayama conjecture for symmetric groups. We provide a similar but a shorter and relatively elementary proof of their result. Our method enables us to obtain a more general H-analogue of the Nakayama conjecture where H is a set of positive integers.

متن کامل

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

A short proof of the maximum conjecture in CR dimension one

In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...

متن کامل

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

متن کامل

A Proof of Andrews ' < ? - Dyson Conjecture for «

Andrews' g-Dyson conjecture is that the constant term in a polynomial associated with the root system An _, is equal to the ^-multinomial coefficient. Good used an identity to establish the case q = 1, which was originally raised by Dyson. Andrews established his conjecture for n < 3 and Macdonald proved it when a¡ = a2 = ■ ■ ■ = a„ = 1,2 or oo for all n > 2. We use a ¿/-analog of Good's identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1996

ISSN: 0097-3165

DOI: 10.1006/jcta.1996.0060